已知函数f<x>=lg[(kx-1)⼀(x-1)]

2025-05-09 07:37:53
推荐回答(2个)
回答1:

f=lg[(kx-1)/(x-1)]
设真数t=(kx-1)/(x-1)>0
函数f在【10,正无穷)上单调递增
需t=(kx-1)/(x-1)在【10,正无穷)上单调递增
k=0时,t=1/(1-x) 定义域为(-∞,1)不合题意
t=[(kx-k)+(k-1)]/(x-1)
=k+(k-1)/(x-1)
k>1时,
t=k+(k-1)/(x-1)在(1,+∞)上为减函数,不合题意

k=1f(x)=0,不合题意

00
即(x-1/k)/(x-1)>0
解得x<1或x>1/k
∵k-1<0
∴ t=k+(k-1)/(x-1)在(1/k,+∞)上递增
函数在【10,正无穷)上单调递增

需1/k<10,k>1/10
∴1/10
k<0时,(kx-1)/(x-1)>0
即(x-1/k)/(x-1)<0
解得1/k∴1/10

回答2:

对真数(kx–1)/( x–1)求导,令导数大于0在(10,无穷大)成立即可,