设交点为(x0,y0),C1,C2的切线方程为C1:y=(2x0-2)x+y0C2:y=(-2x0+A)x+y0两切线互相垂直表明(2x0-2)(-2x0+A)=-14x0^2-2(A+2)x0+2A-1=0而交点满足x0^2-2x0+2=-x0^2+Ax0+B2x0^2-(A+2)x0+2-B=04x0^2-2(A+2)x0+4-2B=0则4-2B=2A-1A+B=2.52.5=A+B>=2sqrt(AB)AB<=1.5625