立方根的性质:
(1)在实数范围内,任何实数的立方根只有一个。
(2)在实数范围内,负数不能开平方,但可以开立方。
(3)0的立方根是0。
(4)立方和开立方运算,互为逆运算。
(5)在复数范围内,任何非0的数都有且仅有3个立方根(一实根,二共轭虚根),它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
(6)在复数范围内,负数既可以开平方,又可以开立方。
立方根的定义:如果一个数b,使得b³=a,那么我们把b叫做a的一个立方根,a的立方根记做3根号a。
扩展资料:
开立方的方法:
1、将被开立方数的整数部分从个位起向左每三位分为一组。
2、根据最左边一组,求得立方根的最高位数。
3、用第一组数减去立方根最高位数的立方,在其右边写上第二组数。
4、用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数。
5、用同样方法继续进行下去。
参考资料来源:百度百科—立方根
立方根的性质:
(1)任何数都有立方根,且都只有一个立方根。
(2)正数的立方根是正数,负数的立方根是负数,0的立方根是0.
如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根,也就是说,如果x³=a,那么x叫做a的立方根。
正数的立方根是正数,负数的立方根是负数。零的立方根是零。
立方根的性质:
(1)正数有一个正的立方根.
(2)负数有一个负的立方根.
(3)0的立方根是0.