设D是平面区域0<=x<=1,0<=y<=1,则二重积分∫∫xydxdy=

2025-05-09 08:24:03
推荐回答(4个)
回答1:

设D是平面区域0<=x<=1,0<=y<=1,则二重积分∫∫xydxdy=1/4。

解题过程如下:

∫∫xydxdy=∫[0→1]xdx∫[0→1]ydy=1/2x²|[0→1]*1/2y²|[0→1]=1/4

解析:对于二重积分,一般使用的方法是累次积分,即先积分x后积分y,或反之。在本题中,积分区域为0≤x≤1,0≤y≤1的正方形,因此x与y相互独立,互不影响,因此可以将二重积分∫∫xydxdy拆成0≤x≤1时∫xdx的积分与0≤y≤1时∫ydy积分的乘积。

扩展资料

在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。

为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域。

当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。

回答2:

∫∫xydxdy=1/4

解题过程如下:

∫∫xydxdy=∫[0→1]xdx∫[0→1]ydy=1/2x²|[0→1]*1/2y²|[0→1]=1/4

解析:对于二重积分,一般使用的方法是累次积分,即先积分x后积分y,或反之。在本题中,积分区域为0≤x≤1,0≤y≤1的正方形,因此x与y相互独立,互不影响,因此可以将二重积分∫∫xydxdy拆成0≤x≤1时∫xdx的积分与0≤y≤1时∫ydy积分的乘积。

扩展资料:

当被积函数大于零时,二重积分是柱体的体积。

当被积函数小于零时,二重积分是柱体体积负值。

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。






回答3:

  答案:∫∫xydxdy=1/4
  解:∫∫xydxdy=∫[0→1]xdx∫[0→1]ydy=1/2x²|[0→1]*1/2y²|[0→1]=1/4
  解析:对于二重积分,一般使用的方法是累次积分,即先积分x后积分y,或反之。在本题中,积分区域为0≤x≤1,0≤y≤1的正方形,因此x与y相互独立,互不影响,因此可以将二重积分∫∫xydxdy拆成0≤x≤1时∫xdx的积分与0≤y≤1时∫ydy积分的乘积。

回答4:

解:原式=∫<0,1>xdx∫<0,1>ydy
=(1^2/2-0^2/2)(1^2/2-0^2/2)
=(1/2)(1/2)
=1/4。