球面上有三个点A、B、C组成球的一个内接三角形,若AB=18,BC=24,AC=30,且球心到△ABC所在平面的距离等

2025-05-09 01:23:28
推荐回答(1个)
回答1:



球面上三点A、B、C,平面ABC与球面交于一个圆,三点A、B、C在这个圆上
∵AB=18,BC=24,AC=30,
AC 2 =AB 2 +BC 2 ,∴AC为这个圆的直径,AC中点M圆心
球心O到平面ABC的距离即OM=球半径的一半=
1
2
R
△OMA中,∠OMA=90°,OM=
1
2
R,AM=
1
2
AC=30×
1
2
=15,OA=R
由勾股定理(
1
2
R) 2 +15 2 =R 2
3
4
R 2 =225
解得R=10
3

球的表面积S=4πR 2 =1200π
故答案为:1200π.