解答:证明:(1)∵四边形ADEF是正方形,
∴AD=AF,∠FAD=90°=∠BAC,
∴∠FAD-∠DAC=∠BAC-∠DAC,
∴∠FAC=∠BAD,
在△ABD和△ACF中
,
AB=AC ∠BAD=∠FAC AD=AF
∴△ABD≌△ACF(SAS),
∴∠B=∠FCA,
∵∠BAC=90°,
∴∠B+∠ACB=90°,
∴∠ACB+∠ACF=90°,
∴FC⊥BC.
(2)∵△ABD≌△ACF,
∴BD=CF,
∵BD=AC,
∴AC=CF,
∴∠CAF=∠CFA,
∵四边形ADEF是正方形,
∴AD=EF,∠DAF=∠EFA=90°,
∴∠DAF-∠CAF=∠EFA-∠CFA,
∴∠DAC=∠EFC,
在△DAC和△EFC中
,
AD=EF ∠DAC=∠EFC AC=CF
∴△DAC≌△EFC(SAS),
∴CD=CE.