证明:①当n=1时,a1=a>1,不等式成立.②假设n=k(k≥1)时,不等式成立,即ak>1,则当n=k+1时,ak+1?1= a +1 2ak ?1= (ak?1)2 2ak .∵ak>1,∴ (ak?1)2 2ak >0.∴ak+1>1,即当n=k+1时,不等式也成立.综合①②知,对一切n∈N*,都有an>1.